This article was downloaded by:

On: 27 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Synthesis and Characterizations of Tin(IV)trithiophosphates and Their Adducts With Nitrogen Donor Bases

U. N. Tripathi^a; D. K. Sharma^b; Nisha Jain^b; M. Soni^c

^a Department of chemistry, Deen Dayal Upadhyay University, Gorakhpur, (Uttar Pradesh), India ^b Department of Chemistry, Government Arts and Science College, Ratlam, (MP), India ^c Mandsaur Institute of Pharmacy, Mandsaur, (MP), India

To cite this Article Tripathi, U. N., Sharma, D. K., Jain, Nisha and Soni, M.(2007) 'Synthesis and Characterizations of Tin(IV) trithiophosphates and Their Adducts With Nitrogen Donor Bases', Phosphorus, Sulfur, and Silicon and the Related Elements, 182: 5, 1033 - 1044

To link to this Article: DOI: 10.1080/10426500601091063 URL: http://dx.doi.org/10.1080/10426500601091063

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phosphorus, Sulfur, and Silicon, 182:1033–1044, 2007

Copyright © Taylor & Francis Group, LLC ISSN: 1042-6507 print / 1563-5325 online

DOI: 10.1080/10426500601091063

Synthesis and Characterizations of Tin(IV)trithiophosphates and Their Adducts With Nitrogen Donor Bases

U. N. Tripathi

Department of chemistry, Deen Dayal Upadhyay University, Gorakhpur (Uttar Pradesh), India

D. K. Sharma

Nisha Jain

Department of Chemistry, Government Arts and Science College, Ratlam (MP), India

M. Soni

Mandsaur Institute of Pharmacy, Mandsaur (MP), India

Bis-(trithiophosphato)tin(IV) $[(RO)P(S)S_2]_2Sn$ (where $R=n\text{-}C_3H_7,i\text{-}C_3H_7,i\text{-}C_5H_{11},\text{-}C_6H_{11},\text{-}C_6H_5)$ were prepared by a reaction of methanolic solution of $SnCl_4$ and dipotassium salt of trithiophosphates in a 1:2 molar ratio, and their adducts $[(RO)P(S)S_2]_2Sn.N_2C_{12}H_8$ and $[(RO)P(S)S_2]_2Sn.N_2C_{10}H_8$ were prepared by a reaction of methanolic solution of $[(RO)P(S)S_2]_2Sn.N_2C_{10}H_8$ were prepared by a reaction. These newly synthesized derivatives have been characterized by elemental analysis; molecular weight measurement; and IR, ^{13}C , ^{31}P , and $^{119}Sn.NMR$ spectral studies. A coordination number of four and six is suggested for trithiophosphates of tin(IV) and their adducts with N-donor bases, respectively.

Keywords 1,10-phenanthroline; 2,2'-bipyridyl; phosphorotrithioate; Tin(IV)

INTRODUTION

In recent years considerable interest has been produced in the chemistry of metallic moieties bonded with sulfur ligands such as thiolates, dithiolates, 1 thio- β -diketonates, 2 dithiocarbamates, and O,O'-alkylene

Received September 11, 2006; accepted October 6, 2006.

We are thankful to the CDRI, Lucknow (India), NCL, Pune (India), RSIC, Banglore (India), and USIC, Delhi University (India), for elemental and spectral analysis of the synthesized compounds.

Address correspondence to U. N. Tripathi, Department of Chemistry, DDU University, Gorakhpur (UP), India. E-mail: un_tripathi@yahoo. com

dithiophosphates^{3–5} Some mono-; di-, and tri-organo tin (IV) derivatives of dialkyl dithiophosphates have been synthesized and characterized by ¹³C, ³¹P, and ¹¹⁹Sn NMR and mossbauer spectral studies. The ¹¹⁹Sn NMR chemical shift and [¹ J(¹¹⁹Sn-¹³C)] and [² J(¹¹⁹Sn-¹H)] of triorgano tin(IV) dialkyl dithiophosphates are consistent with tetrahedral geometry and four-coordinated Sn, although a mossbauer study indicates five-coordinated tin in a solid state. These studies also reveal that in mono-, and di-organo tin(IV) dithiophosphates, the Sn atom is weakly coordinated to ligand.^{6,7} Organic trithiophosphates esters have been used as defoliants, ⁸ insecticides ^{8,9} and nematodicidal ⁹ and inhibitors ¹⁰ of steel corrosion. Potassium trithiophosphates exist in two isomeric forms.

$$[(RO)P(S)S_2] K_2 \longleftrightarrow [(RS)P(O)S_2] K_2 \tag{1}$$

The persual of literature revealed only a few publications on the metallic ester of trithiophosphoric acid^{11,12} and trithiophosphates of tin(IV) moieties. Hence it was thought worthwhile to study the trithiophosphato of tin (IV) and their adducts with nitrogen donor bases.

EXPERIMENTAL

Dipotassium salt of O-alkyl, O-cycloalkyl, and O-aryl trithiophosphates were prepared by reaction of the requisite anhydrous alcohol with P_2S_5 and triethylamine in a 1:3:3 molar ratio, respectively, in anhydrous benzene. The reaction mixture was stirred for half an hour on a water bath. After stirring salt was precipitated out. All chemicals were of A.R. grade and were used after the drying process. The compound and adducts described in this article were synthesized by the following general routes.

Synthesis of [(RO)P(S)S₂]₂Sn

A methanolic solution (15 mL) of tetrachorotin(IV) and a methanolic solution of dipotassium salt of trithiophosphates were mixed and refluxed for 10–12 h. The reaction was carried out in a 1:2 molar ratio. After refluxing, the solid KCl was precipitated out. Insolubles were filtered off, and the product was obtained from the filtrate by removal of volatiles under reduced pressure. Complex numbers 1–5 were prepared by the same procedure. The analytical results are summarized in Table I.

Synthesis of [(RO)P(S)S₂]₂Sn. $N_2C_{12}H_8$ and [(RO)P(S)S₂]₂ Sn. $N_2C_{10}H_8$

A methanolic solution (5 mL) of bis-(trithiophosphato)tin(IV) and a methanolic solution of 1,10-phenanthroline were mixed and stirred for

TABLE I Synthetic and Analytical Data for $[(RO)P(S)S_2]_2Sn$

u.)	SnCl_4	0.33.2.85	`	23.90 0.33,2.85		21.40 0.30, 2.55		20.50 0.29,2.45		0.29, 2.50	
iu/Caic	$_{ m Sn}$	23.92		23.90	(24.15)		(21.68)		(20.76)	20.99	(21.21)
Analysis % Found(Calcu.)	\mathbf{S}	38.14		38.90	(39.15)	3.88 34.90	(35.15)	33.50	(3.88) (33.66)	34.10	25.76) (1.81) (34.39) (21.21)
Allalysi	\mathbf{S}	2.62	(2.87)	2.60	(2.87)	3.88	(4.05)	3.60	(3.88)	1.50	(1.81)
	С	14.48	(14.66)	14.40	(14.66)	21.67	(21.94)	25.08	(25.22)	25.40	(25.76)
	State	Yellow Solid		""		""		""		""	
	Yield (%)	92		93		90		92		06	
	Product (in g)	$[(RO)P(S)S_2]_2Sn$ $In(C_2H_7O)P(S)S_2]_3Sn$	0.57	$[i(C_3H_7O)P(S)S_2]_2Sn$	1.58	$[i(C_5H_{11}O)P(S)S_2]_2Sn$	0.56	$[(C_6H_{11}O)P(S)S_2]_2Sn$	0.58	$[s(C_6H_5O)P(S)S_2]_2Sn$	0.56
	Molar ratio	1:2		1:2		1:2		1:2		1:2	
	. No. Reactants (in g,mmoles) Molar ratio	$[(\mathrm{RO})\mathrm{P}(\mathrm{S})\mathrm{S}_2]\mathrm{K}_2\\[1ex]\mathrm{In}(\mathrm{C}_2\mathrm{H}_7\mathrm{O})\mathrm{P}(\mathrm{S})\mathrm{S}_9]\mathrm{K}_2$	1.51,5.70	$[\mathrm{i}(\mathrm{C_3H_7O)P(S)S_2}]\mathrm{K_2}$	1.51, 5.70	$[i(C_5H_{11}O)P(S)S_2]K_2$	1.51,5.1	$[(C_6H_{11}O)P(S)S_2]K_2$	1.51,4.90	$[(\mathrm{C}_6\mathrm{H}_5\mathrm{O})\mathrm{P}(\mathrm{S})\mathrm{S}_2]\mathrm{K}_2$	1.51,5.0
	S. No.	ļ .		2.				4.		5.	

5–6 h. The reaction was carried out in a 1:1 molar ratio. After stirring the methanol was removed under vacuum, and yellow adducts were obtained. Adducts numbers 6–10 were prepared by this same procedure. The adducts with 2,2′-bipyridyl (11–15) were prepared by this same procedure. The analytical results are summarized in Table II.

MEASUREMENTS

IR spectra were recorded in nujol mulls using CsI cells on a perkin Elmer 577 spectrometer in the range 4000–200 cm⁻¹. ¹³C NMR, ³¹P NMR, and ¹¹⁹Sn NMR spectra of these derivatives have been recorded in CDCl₃ on a Bruker DRX-300 spectrometer using TMS, H₃PO₄, and tetramethyltin standards, respectively. Molecular weight was measured for Sn and S and were carried out by standard procedure. ¹⁴ Carbon, hydrogen, and nitrogen were estimated by coleman C.H.N. analyzers.

RESULT AND DISCUSSION [(RO)P(S)S₂]₂Sn

Bis-(trithiophosphato)tin(IV) are a yellow solid and sparingly soluble in common organic (benzene, dichoromethane, chloroform, etc.) and coordinating (DMF, DMSO, THF, etc.) solvents. The complexes are unstable at r.t. and tend to decompose, even under a closed environment. Decomposition is rather slow when these compounds are stored in a dry atmosphere at a low temperature. Decomposition is marked by the color change from yellow to brown. Molecular weight measurements could not be done due to the polymeric nature of the compounds.

IR Spectra

In the IR spectrum the bands observed in the region 1043–1068 and 850–868 cm⁻¹ have been assigned to $\nu[(P)$ -O-C] and [P-O-(C)], respectively. The $\nu[P=S]$ mode may be characterized by the presence of band in the region 642–660 cm⁻¹ indicating the bidentate nature of trithiophosphate ligand. The band present in the region 593–609 cm⁻¹ may be ascribed to $\nu[P-S]$ stretching mode. Appearance of a new band (in comparison to a free ligand) in the region 360–375 cm⁻¹ indicates the formation of a [Sn–S] bond. The IR spectral data of ligands and deirvatives are summarized in Table III.

NMR Spectra

The ¹³C resonance for the carbon atom of the P-O-C group appears as doublet due to coupling with ³¹P nuclei. In the proton decoupled

 $TABLE\ II\ Synthetic\ and\ Analytical\ Data\ for\ [(RO)P(S)S_2]Sn\cdot C_{12}H_8N_2\ and\ [(RO)P(S)S_2]Sn\cdot C_{10}H_8N_2$

	Reactants	Molar		Vield	Mol Wt		Anal	ysis (%)	Analysis (%) Found/(Calcd.)	Calcd.)	
S. No.	(ir	ratio	Product (in g)	(%)	Fo	С	Н	N	\mathbf{S}	$_{ m Sn}$	And $C_{10}H_8N_2$
-	$C_{12}H_8N_2[(RO)P(S)S_2]_2Sn_{L-(G-H-O)P(S)S-1-S-1}$	7	$[(RO)P(S)S_2]_2Sn\cdot C_{12}H_8N_2$	9	640.49	91	0.10	700	66 99	7	0 22
i	$\ln(C_3 \Pi_7 \text{O}) \Gamma(S) S_2 _2 S \Pi_7 \text{O} \Gamma(S) S_2 _2$	T:T	$[n(C_3n_7O)F(S)S_2]_2Sn\cdot C_{12}n_8N_2$ 3.68	88	040.42	647.32)	32.19)	(3.30)	(4.17)	28.65)	(17.67)
2.	$[\mathrm{i}((\mathrm{C_3H_7O})\mathrm{P(S)S_2}]_2\mathrm{Sn}$	1:1	$[i((C_3H_7O)P(S)S_2]_2Sn\cdot C_{12}H_8N_2$	66	639.24	31.88	3.24	4.00		17.50	3.03
	1,5.55		3.68			(647.32)	(32.19)	(3.30)	(4.17)	(28.65)	(17.67)
65	$[\mathrm{i}(\mathrm{C}_5\mathrm{H}_{11}\mathrm{O})\mathrm{P}(\mathrm{S})\mathrm{S}_2]_2\mathrm{Sn}$	1:1	$[i(C_5H_{11}O)P(S)S_2]_2Sn\cdot C_{12}H_8N$	86	695.70	36.10	4.00	3.60	26.20	16.29	2.54
	1,5.55		3.94			(703.28)	(36.32)	(4.15)	(3.85)	(26.44)	(16.31)
4.	$[(C_6H_{11}O)P(S)S_2]_2Sn$	1:1	$[(C_6H_{11}O)P(S)S_2]_2Sn\cdot C_{12}H_8N_2$	66	719.34	38.16	3.86	3.52	25.23	15.68	3.17
	1,5.55		4.12			(727.45)	(38.35)	(4.02)	(3.72)	(25.59)	(15.79)
5.	$[(\mathrm{C_6H_5O})\mathrm{P(S)S_2}]_2\mathrm{Sn}$	1:1	$[(C_6H_5O)P(S)S_2]_2Sn\cdot C_{12}H_8N_2$	66	708.86	38.60	2.20	3.50	25.84	15.90	3.10
	1,5.55		4.05			(715.35)	(38.97)	(2.45)	(3.78)	(26.00)	(16.04)
.9	$[\mathrm{n}(\mathrm{C_3H_7O})\mathrm{P}(\mathrm{S})\mathrm{S_2}]_2\mathrm{Sn}$	1:1	$[n(C_3H_7O)P(S)S_2]_2Sn\cdot C_{10}H_8N$	26	662.34	29.40	3.18	4.12	29.50	18.27	3.14
	1,6.40		3.97			(671.53)	(29.67)	(3.42)	(4.32)	(29.71)	(18.33)
7.	$[\mathrm{i}(\mathrm{C_3H_7O})\mathrm{P}(\mathrm{S})\mathrm{S_2}]_2\mathrm{Sn}$	1:1	$[i(C_3H_7O)P(S)S_2]_2Sn.C_{10}H_8N_2$	86	661.43	29.41	3.19	4.10	29.50	18.28	3.14
0	1,6.40		4.01			(671.53)	(29.67)	(3.42)	(4.32)	(29.71)	(18.33)
œ	$[i(C_5H_{11}O)P(S)S_2]_2Sn$	1:1	$[i(C_5H_{11}O)P(S)S_2]_2Sn\cdot C_{10}H_8N$	86	720.66	32.60	3.88	3.61	26.10	16.18	3.67
	1,6.40		4.57			(727.49)	(32.88)	(4.13)	(3.83)	(26.33)	(16.24)
6	$[(C_6H_{11}O)P(S)S_2]_2Sn$	1:1	$[(C_6H_{11}O)P(S)S_2]_2Sn\cdot C_{10}H_8N_2$	26	742.26	36.10	2.84	3.59	22.10	16.10	3.65
	1,6.40		4.51			(751.64)	(36.31)	(3.04)	(3.85)	(22.31)	(16.31)
10.	$[(\mathrm{C_6H_5O})\mathrm{P(S)S_2}]_2\mathrm{Sn}$	1:1	$[(C_6H_5O)P(S)S_2]_2Sn\cdot C_{10}H_8N_2$	26	729.78	36.62	2.28	3.70	26.50	16.33	3.58
	1,6.40		4.44			(739.56)	(36.92)	(2.53)	(3.91)	(26.88)	(16.58)

(2)212212					
Compound	ν[(P)-O-C]	ν[P-O-(C)]	ν[P=S]	ν[P – S]	ν[Sn–S]
$[(Pr^nO) P(S)S_2]_2Sn$	1012 _(s)	816 _(s)	643 _(m)	437 _(m)	_
$[(Pr^iO)\;P(S)S_2]_2Sn$	$1009_{(s)}$	810 _(s)	$640_{(m)}$	441 _(m)	_
$[(Am^iO)\;P(S)S_2]_2Sn$	$1012_{(s)}$	$812_{(s)}$			_
$[(C. h. O) P(S)S_2]_2Sn$	$1013_{(s)}$	$841_{(s)}$	$644_{(m)}$	$445_{(m)}$	_
$[(PhO)\ P(S)S_2]_2Sn$	$1011_{(s)}$	$800_{(s)}$	$640_{(m)}$	$443_{(m)}$	_
	$1046_{(s)}$	$855_{(s)}$	$650_{(m)}$		$366_{(w)}$
$[(Pr^iO)\ P(S)S_2]_2Sn$	$1043_{(s)}$	$850_{(s)}$			$360_{(w)}$
$[(Am^iO)\;P(S)S_2]_2Sn$	$1068_{(s)}$	$868_{(s)}$	$660_{(m)}$		$375_{(w)}$
$[(C. h. O) P(S)S_2]_2Sn$	$1066_{(s)}$		$655_{(m)}$	$605_{(m)}$	$373_{(w)}$
$[(PhO)\;P(S)S_2]_2Sn$	$1062_{(s)}$	$853_{(s)}$	$651_{(m)}$	$601_{(m)}$	$370_{(w)}$
	Compound [(Pr ⁿ O) P(S)S ₂] ₂ Sn [(Pr ⁱ O) P(S)S ₂] ₂ Sn [(Am ⁱ O) P(S)S ₂] ₂ Sn [(C. h. O) P(S)S ₂] ₂ Sn [(PhO) P(S)S ₂] ₂ Sn [(Pr ⁿ O) P(S)S ₂] ₂ Sn [(Pr ⁱ O) P(S)S ₂] ₂ Sn [(Am ⁱ O) P(S)S ₂] ₂ Sn [(Am ⁱ O) P(S)S ₂] ₂ Sn [(C. h. O) P(S)S ₂] ₂ Sn	$\begin{array}{c c} Compound & \nu[(P)\text{-O-C}] \\ \hline \\ [(Pr^nO)\ P(S)S_2]_2Sn & 1012_{(8)} \\ [(Pr^iO)\ P(S)S_2]_2Sn & 1009_{(8)} \\ [(Am^iO)\ P(S)S_2]_2Sn & 1012_{(8)} \\ [(C.\ h.\ O)\ P(S)S_2]_2Sn & 1013_{(8)} \\ [(PhO)\ P(S)S_2]_2Sn & 1011_{(8)} \\ [(Pr^nO)\ P(S)S_2]_2Sn & 1046_{(8)} \\ [(Pr^iO)\ P(S)S_2]_2Sn & 1043_{(8)} \\ [(Am^iO)\ P(S)S_2]_2Sn & 1068_{(8)} \\ [(C.\ h.\ O)\ P(S)S_2]_2Sn & 1066_{(8)} \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

TABLE III IR Spectral Data (cm^{-1}) for $[(RO)P(S)S_2]K_2$ and $[(RO)P(S)S_2]_2Sn$

³¹P NMR spectra, only one resonance for each compound in the range 96.28–97.49 ppm is obtained. In ¹¹⁹Sn NMR spectra the ¹¹⁹Sn NMR chemical shifts of all the compounds have been observed in the range 250–272 ppm. These ¹¹⁹Sn NMR chemical shifts suggest that in compound numbers 1–5 the tin(IV) is four coordinated. ¹⁴ The NMR spectral data are summarized in Tables IV and V. In solid state studies such as IR the polymeric nature was obtained, but in solution, which is quite difficult to form (under drastic conditions), the polymeric nature may be reduced to a monomeric nature, hence the coordination number decreases to four. The tentative structure is shown in Figure 1.

$[(RO)P(S)S_2]_2Sn.N_2C_{12}H_8$ $(C_{12}H_8N_2 = 1,10$ -phenanthroline)

All the adducts are a yellow solid and soluble in common organic (benzene, dichloromethane, chloroform, etc.) and coordinating (DMF, DMSO, THF, etc.) solvents. In comparison to the parent compound, the adducts are easily soluble in common organic solvents. The adducts are quite stable at r.t. The molecular weight measurment indicates a

FIGURE 1 Structure of $[(RO)P(S)S_2]_2Sn$.

⁽s) = strong, (m) = medium, (w) = weak.

	-	. = =	
S. No.	Compound	$S_2(S)P(OR)$ Carbons	Chemical shift (δ, ppm)
1.	$\begin{array}{c} [(Pr^{n}O)P(S)S_{2}]_{2}Sn \\ 24.65, C_{2} \end{array}$	72.92, d, C; ${}^2\mathrm{J}_{P-}$ 15.49, C ₃	C = 30 cps
2.	$[(Pr^{i}O)P(S)S_{2}]_{2}Sn$ 24.84, C_{2}	68.78, d, C; ² J _P _	$\mathrm{C}=30~\mathrm{cps}$
3.	$\begin{aligned} &[(Am^{i}O)P(S)S_{2}]_{2}Sn\\ &42.48,C_{2}\\ &27.75,C_{3}\\ &25.68,C_{4} \end{aligned}$	63.80, d, C; ${}^{2}J_{P-}$	C = 33 cps
4.	$\begin{aligned} &[(\text{C. h. O})\text{P(S)S}_2]_2\text{Sn} \\ &33.88, \text{C}_{2,6} \\ &29.98, \text{C}_{3,5} \\ &29.08, \text{C}_4 \end{aligned}$	73.72, d, C; ${}^{2}J_{P-}$	C = 354 cps
5.	$\begin{aligned} &[(\text{PhO})\text{P(S)S}_2]_2\text{Sn} \\ &119.48, \text{C}_{2.6} \\ &134.52, \text{C}_{3.5} \\ &125.78, \text{C}_4 \end{aligned}$	161.52, d, C; ² J _P _	C = 450 cps

TABLE IV ¹³C NMR Spectral data (δ, ppm) for $[(RO)P(S)S_2]_2Sn$

monomeric nature of these adducts in diluted chloroform solution at 45° C.

IR Spectra

In the IR spectrum the bands observed in the region 1042–1065 cm⁻¹ and 842–856 cm⁻¹ have been assigned to ν [(P)-O-C] and [P-O-(C)], respectively. The ν [P=S] mode may be characterized by the presence of a band in the region 639–652 cm⁻¹, which is quite similar to the ligand's P=S stretching mode, indicating the bidentate nature of trithiophosphate ligand, this also shows that there is no interaction of P=S to the metal. The band present in the region 592–596 cm⁻¹ may be ascribed to ν [P-S] stretching mode. Appearance of a new band (in comparison to a free ligand) in the region 359–372 cm⁻¹, indicates

TABLE V 31 P and 119 Sn NMR Spectral Data (δ , ppm) for [(RO)P(S)S₂]₂Sn

S. no.	$^{119}\mathrm{Sn}\;\mathrm{NMR}$	Compound	³¹ P NMR
1.	250	$[(Pr^nO)P(S)S_2]_2Sn$	96.28
2.	252	$[(Pr^iO)P(S)S_2]_2Sn$	96.38
3.	268	$[(Am^iO)P(S)S_2]_2Sn$	96.29
4.	269	$[(C. hO)P(S)S_2]_2Sn$	97.28
5.	272	$[(PhO)P(S)S_2]_2Sn$	97.49

TABLE VI IR Spectral Data (cm-1) for $[(RO)P(S)S_2]_2Sn.C_{12}H_8N_2$ and $[(RO)P(S)S_2]_2Sn.C_{10}H_8N_2$

S. no.	Compound	ν [(P)-O-C]	$\nu \left[P\text{-}O\text{-}(C) \right]$	ν [P=S]	ν [P=S]	$\nu [\mathrm{Sn}\text{-}\mathrm{S}]$	$\nu [\mathrm{Sn-N}]$	ν [C—N]
1.	$[({ m Pr}^{ m n}{ m O}){ m P}({ m S}){ m S}_2]_2{ m Sn.C}_{12}{ m H}_8{ m N}_2$	$1048_{\rm (s)}$	$842_{(\mathrm{s})}$	$639_{(m)}$	$592_{(m)}$	$361_{ m (w)}$	$385_{(w)}$	$1592_{\rm (s)}$
2.	$[({ m Pr}^i{ m O}){ m P(S)S_2}]_2{ m Sn.C_{12}H_8N_2}$	$1042_{\rm (s)}$	$845_{ m (s)}$	$640_{(m)}$	$596_{(m)}$	$359_{ m (w)}$	$383_{(w)}$	$1591_{\rm (s)}$
 	$[(\mathrm{Am}^i\mathrm{O})\mathrm{P}(\mathrm{S})\mathrm{S}_2]_2\mathrm{Sn.C}_{12}\mathrm{H}_8\mathrm{N}_2$	$1065_{\rm (s)}$	$856_{ m (s)}$	$650_{(m)}$	$593_{\mathrm{(m)}}$	$372_{ m (w)}$	$397_{ m (w)}$	$1605_{\rm (s)}$
4.	$[(C. h. O)P(S)S_2]_2Sn.C_{12}H_8N_2$	$1063_{\rm (s)}$	$852_{(\mathrm{s})}$	$652_{(m)}$	$592_{(m)}$	$369_{\mathrm{(w)}}$	$391_{\mathrm{(w)}}$	$1601_{(\mathrm{s})}$
5.	$[({ m PhO}){ m P(S)S_2}]_2{ m Sn.C_{12}H_8N_2}$	$1059_{\rm (s)}$	$847_{(\mathrm{s})}$	$645_{(m)}$	588 _(m)	$366_{\mathrm{(w)}}$	$384_{ m (w)}$	$1588_{\rm (s)}$
.9	$[({ m Pr^nO}){ m P(S)S_2}]_2{ m Sn.C_{10}H_8N_2}$	$1049_{\rm (s)}$	$844_{(\mathrm{s})}$	$638_{\mathrm{(m)}}$	$594_{\mathrm{(m)}}$	$365_{\mathrm{(w)}}$	$388_{\mathrm{(w)}}$	$1598_{\rm (s)}$
7.	$[({ m Pr}^i{ m O}){ m P(S)S_2}]_2{ m Sn.C_{10}H_8N_2}$	$1041_{\rm (s)}$	$843_{(\mathrm{s})}$	$640_{(m)}$	$592_{\mathrm{(m)}}$	$360_{\mathrm{(w)}}$	$384_{ m (w)}$	$1595_{\rm (s)}$
œ	$[(\mathrm{Am}^i\mathrm{O})\mathrm{P}(\mathrm{S})\mathrm{S}_2]_2\mathrm{Sn.C}_{10}\mathrm{H}_8\mathrm{N}_2$	$1067_{\rm (s)}$	$858_{(s)}$	$648_{\mathrm{(m)}}$	$599_{\mathrm{(m)}}$	$370_{ m (w)}$	$394_{ m (w)}$	$1615_{\rm (s)}$
6	$[(C. h. O)P(S)S_2]_2Sn.C_{10}H_8N_2$	$1064_{\rm (s)}$	$853_{(\mathrm{s})}$	$645_{(m)}$	$597_{ m (m)}$	$368_{\mathrm{(w)}}$	$393_{ m (w)}$	$1609_{\rm (s)}$
10.	$[({\rm PhO}){\rm P(S)S_2]_2Sn.C_{10}H_8N_2}$	$1057_{\rm (s)}$	$849_{ m (s)}$	$642_{\mathrm{(m)}}$	$590_{\mathrm{(m)}}$	$364_{ m (w)}$	$392_{ m (w)}$	$1606_{\rm (s)}$

 $^sS {\bf trong}\\ ^m{\bf Medium}\\ ^w{\bf Week}$

TABLE VII ^{13}C NMR Spectral Data $(\delta,\,ppm)$ for $[(RO)P(S)S_2]_2Sn.C_{12}H_8N_2$ and $[(RO)P(S)S_2]_2Sn.C_{10}H_8N_2$

S. No.	Compound	$S_2(S)P(OR)$ carbons	$C_{12}H_8N_2$ carbons
1.	$[(Pr^{n}o)P(S)S_{2}]_{2}Sn.C_{12}H_{8}N_{2}$	$69.89, d, C; {}^{2}J_{P-C} = 90 \text{ cps}$ $23.68, C_{2}$	131.44,C ₂ ; 121.52,C ₃ ; 126.12, C ₄ ; 125.29, C ₅ ;
2.	$[(Pr^{i}o)P(S)S_{2}]_{2}Sn.C_{12}H_{8}N_{2} \\$	$\begin{array}{l} 10.46, C_{3} \\ 69.98, d, C; ^{2}J_{P-C} = 63\; cps \\ 22.70, C_{2} \end{array}$	150.82, C ₆ . 129.62, C ₂ ; 127.84, C ₃ ; 122.85, C ₄ ; 128.45, C ₅ ;
3.	$[(Am^{i}o)P(S)S_{2}]_{2}Sn.C_{12}H_{8}N_{2} \\$	63.99, d, C; $^2J_{P-C} = 24 \text{ cps}$ 39.54, C_2	152.62, C ₆ . 134.82, C ₂ ; 125.23, C ₃ ; 123.84, C ₄ ; 128.26, C ₅ ;
4.	$[(C.\ h.^{i}o)P(S)S_{2}]_{2}Sn.C_{12}H_{8}N_{2}$	23.18, C_3 ; 21. 89, C_4 73.91, d, C ; $^2J_{P-C} = 342$ cps 31.80, $C_{2.6}$	152.90, C ₆ . 136.94, C ₂ ; 127.24, C ₃ ; 126.82, C ₄ ; 130.02, C ₅ ;
5.	$[(Pho)P(S)S_2]_2Sn.C_{12}H_8N_2$	$\begin{array}{l} 24.42, C_{3,5}; 25.92, C_4 \\ 156.60, d, C; ^2J_{P-C} = 438 \; cps \\ 112.41, C_{2.6} \end{array}$	152.18, C ₆ . 137. 26, C ₂ ; 127.25, C ₃ ; 124.64, C ₄ ; 129.04, C ₅ ;
6.	$[(Pr^{n}o)P(S)S_{2}]_{2}Sn.C_{10}H_{8}N_{2} \\$	125.72, $C_{3,5}$ 116.84, C_4 69.88, d, C ; $^2J_{P-C} = 90$ cps 23.62, C_2	150. 09, C ₆ 131.48, C ₂ ; 121.58, C ₃ ; 126.18, C ₄ ; 125.30, C ₅ ;
7.	$[(Pr^{i}o)P(S)S_{2}]_{2}Sn.C_{10}H_{8}N_{2} \\$	$\begin{array}{l} 10.41, C_{3} \\ 69.92,d, C; ^{2}J_{P-C} = 63 \; cps \\ 22.71, C_{2} \end{array}$	150.84, C ₆ . 129.68, C ₂ ; 127.88, C ₃ ; 122.86, C ₄ ; 128.48, C ₅ ;
8.	$[(Am^{i}o)P(S)S_{2}]_{2}Sn.C_{10}H_{8}N_{2} \\$	63.89 , d, C; 2 J $_{P-C} = 24$ cps 39.52 , C_2	152.65, C ₆ . 134.92, C ₂ ; 125.33, C ₃ ; 123.94, C ₄ ;128.36, C ₅ ;
9.	$[(C.\ h.\ o)P(S)S_{2}]_{2}Sn.C_{10}H_{8}N_{2}$	23.19 , $C_{3;}$ 21.84 , C_{4} 73.90 ,d, $C;$ $^{2}J_{P-C} = 342$ cps 31.81 , $C_{2.6}$	152.98, C ₆ 136.96, C ₂ ; 127.28, C ₃ ; 126.92, C ₄ ; 130.12, C ₅ ;
10.	$[(Pho)P(S)S_2]_2Sn.C_{10}H_8N_2$	$\begin{aligned} &24.45,C_{3.5;}25.90,C_4\\ &156.68,d,C;^2J_{P-C}=438\;cps\\ &112.42,C_{2.6}\\ &125.74,C_{3.5};116.86,C_4 \end{aligned}$	152.28, C ₆ . 137. 36, C ₂ ; 127.35, C ₃ ; 124.74, C ₄ ; 129.14, C ₅ ; 150. 19, C ₆

the formation of $\nu[Sn-S]$ bond. ^{16,17} The band present in the region 383–397 cm⁻¹ may be ascribed to $\nu[Sn-N]$ stretching mode. ^{16,18} The $\nu[C=N]$ bond band was found in the region 1591–1605 cm⁻¹. The IR spectral data are summarized in Table VI.

NMR Spectra

The ¹³C NMR spectra of the adducts is quite similar to the parental compounds; only slight differences have been found. The ¹³C resonance for the carbon atom of the P-O-C group appears as a doublet due to coupling with ³¹P nuclei. In the proton decoupled ³¹P NMR spectra, only one resonance for each adduct in the range 95.85–98.29 ppm was obtained. In ¹¹⁹Sn NMR spectra the ¹¹⁹Sn NMR chemical shifts of all the adducts have been observed in the range at 269–281 ppm. These

NMR

281

269

270

277

278

282

5.

6.

7.

8.

9.

10.

[(RO)P($[S]_{2}$ $[S]_$	/A A	-
S. no.	Compound	31 P NMR	¹¹⁹ Sn Nl
1.	$[(Pr^{n}O)P(S)S_{2}]_{2}Sn.C_{12}H_{8}N_{2}$	95.86	270
2.	$[(Pr^{i}O)P(S)S_{2}]_{2}Sn.C_{12}H_{8}N_{2}$	95.85	269
3.	$[(Am^{i}O)P(S)S_{2}]_{2}Sn.C_{12}H_{8}N_{2}$	98.28	278
4.	$[(C. h. O)P(S)S_2]_2Sn.C_{12}H_8N_2$	98.29	279

TABLE VIII ³¹P and ¹¹⁹Sn NMR Spectral Data (δ.ppm) for

 $[(PhO)P(S)S_2]_2Sn.C_{12}H_8N_2$

 $[(Pr^{n}O)P(S)S_{2}]_{2}Sn.C_{10}H_{8}N_{2}$

 $[(Pr^{i}O)P(S)S_{2}]_{2}Sn.C_{10}H_{8}N_{2}$

 $[(Am^{i}O)P(S)S_{2}]_{2}Sn.C_{10}H_{8}N_{2}$

 $[(PhO)P(S)S_2]_2Sn.C_{10}H_8N_2$

 $[(C. h. O)P(S)S_2]_2Sn.C_{10}H_8N_2$

97.49

95.68

95.58

98.82

98.92

98.94

¹¹⁹Sn NMR chemical shifts and IR spectral data suggest that in these adducts the tin (IV) is six coordinated. 17 The NMR spectral data are summarized in Tables VII and VIII. The tentative structure of these adducts is shown in Figure II.

$[(RO)P(S) S_2]_2Sn.N_2C_{10}H_8(C_{10}H_8N_2 = 2.2'-bipyridyl)$

IR Spectra

In the IR spectrum the bands observed in the region 1041–1067 cm⁻¹ and 843–858 cm⁻¹ have been assigned to ν [(P)-O-C] and [P-O-(C)], respectively. The $\nu[P=S]$ mode may be characterized by the presence of a band in the region 638-648 cm⁻¹ indicating the bidentate nature of trithiophosphate ligand. The band present in the region 592–599 cm⁻¹ may be ascribed to $\nu[P-S]$ stretching mode. The appearance of a new

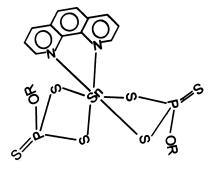


FIGURE 2 Structure of [(RO)P(S)S₂]₂Sn.C₁₂H₈N₂.

FIGURE 3 Structure of [(RO)P(S)S₂]₂Sn.C₁₀H₈N₂.

band (in comparison to a free ligand) in the region 360–370 cm $^{-1}$ indicates the formation of $\nu[Sn-S]$ bond. 16,17 The band present in the region 383–397 cm $^{-1}$ may be ascribed to $\nu[Sn-N]$ stretching mode. 16,18 The $\nu[C=N]$ bond band was found in the region 1595–1615 cm $^{-1}$. The IR spectral data are summarized in Table VI.

NMR Spectra

The ¹³C NMR spectra of the adducts is quite similar to the parental compounds; only slight differences have been found. The ¹³C resonance for the carbon atom of the P-O-C group appears as a doublet due to coupling with ³¹P nuclei. In the proton decoupled ³¹P NMR spectra, only one resonance for each adduct in the range 95.58–98.94 ppm is obtained. In ¹¹⁹Sn NMR chemical shifts, NMR chemical shifts of all the adducts have been observed in the range 269–282 ppm. These ¹¹⁹Sn NMR chemical shifts and IR spectral data suggest that in these adducts the tin(IV) is six coordinated. ¹⁷ The NMR spectral data are summarized in Tables VII and VIII. The tentative structure of these adducts is shown in Figure 3.

CONCLUSION

On the basis of IR, NMR, elemental analysis, and molecular weight measurements, the various coordination numbers of tin and varying modes of bonding of the ligand have been established.

REFERENCES

- [1] R. Verma, V. D. Gupta, and R. C. Mehrotra, Nat. Acad. Sci. Lett., 2, 130 (1979).
- [2] S. K. Saini, V. D. Gupta, and R. C. Mehrotra, Inorg. Nucl. Chem. Lett., 14, 109 (1978).

- [3] S. K. Pandey, G. Srivastava, and R. C. Mehrotra, Ind., J. Chem., 29A, 339 (1990).
- [4] R. Ratnani, G. Srivastava, and R. C. Mehrotra, Inorg. Acta, 161, 253 (1989).
- [5] R. C. Mehrotra, G. Srivastava, and H. P. S. Chouhan, Coord. Chem. Rev., 55, 207 (1984).
- [6] H. C. Clark, V. K. Jain, R. C. Mehrotra, B. P. Singh, G. Srivastava, and T. Birchall, J. Organomet. chem., 279, 385 (1985).
- [7] B. P. Singh, G. Srivastava, and R. C. Mehrotra, Synth. React. In Met-Org. Chem., 19, 963–976 (1983).
- [8] V. I. Derybin and T. Vses, Nanch. Issi. Inst. Khlo., 28, 86, 93 (1974).
- [9] S. Kishino, A. Shitamatsu, and K. Shiokava, Japan 7600,179,(C1A01N; C07F) (1976).
- [10] N. M. Koxhenvikova and V. S. Mikhaolav, Khim. Sredstva. Zashch. Rast., 5, 43–45 (1975).
- [11] F. Goro and N. Koichi, Kenya Mokuzai, 32, 15 (1964); Chem Abstr. 65, 6221n (1916),
- [12] K. Kirschbaum, U. Boennighausen, E. Gesing, B. Krebs, G. Hendel, and Z. Naturforsch. Chem. Sc., 45, 245 (1990)
- [13] U. N. Tripathi and D. K. Sharma, Main Group Metal Chem., 27, 135—144 (2004).
- [14] A. I. Vogel, Textbook of Quantitative Analysis, ELBS and Longman Group Ltd, London (1978).
- [15] T. N. Srivastava, M. A. Siddiqi, and S. K. Srivastava, *Indian J. Chem. Sec. A.*, 26, 267(1987).
- [16] I. R. Beattie, Quart Revs., 17382 (1963).
- [17] H. D. Yin, C. H. Wang, Y. Wang, R. F. Zhang, and C. L. Ma, WujiaxueXuebao, 18, 201–204 (2002); Chem. Abstr., 136, 340762p (2002).
- [18] I. Wharf, R. Wojtowski, and M. Onyszchuk, J. Indian Chem. Soc., 62, 800-804 (1985).